

Communication

Novel Fluorogenic Substrates for Imaging β-Lactamase Gene Expression

Wenzhong Gao, Bengang Xing, Roger Y. Tsien, and Jianghong Rao

J. Am. Chem. Soc., 2003, 125 (37), 11146-11147• DOI: 10.1021/ja0361260 • Publication Date (Web): 19 August 2003

Downloaded from http://pubs.acs.org on March 29, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 14 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Published on Web 08/19/2003

Novel Fluorogenic Substrates for Imaging β -Lactamase Gene Expression

Wenzhong Gao,[†] Bengang Xing,[†] Roger Y. Tsien,[‡] and Jianghong Rao^{*,†}

Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, University of California, Los Angeles, California 90095-1770, and Howard Hughes Medical Institute, Departments of Pharmacology and Chemistry & Biochemistry, University of California San Diego, La Jolla, California 92093-0647

Received May 13, 2003; E-mail: jhrao@mednet.ucla.edu

 β -Lactamases are a family of bacterial enzymes that cleave penicillins and cephalosporins with high catalytic efficiency and render these bacteria resistant to β -lactam antibiotics.¹ Rapid and sensitive detection of β -lactamase activity in biological samples is thus of large clinical importance. While β -lactamases are the biochemical markers for identification of β -lactam antibioticsresistant bacterial pathogens, the β -lactamase activity can also serve as a "reporter" or "sensor" for monitoring biological processes and interactions of interest. TEM-1 β -lactamase (Bla), the 29 kDa isoform product of the ampicillin resistance gene (amp^r) , is especially useful because it is relatively small and monomeric, does not exist in eukaryotes, but can be easily expressed in eukaryotic cells without any noticeable toxicity.2,3 TEM-1 Bla has been developed as a reporter for examining the promoter/regulatory elements activity in living mammalian tissue culture cells.⁴⁻⁶ Protein fragment complementation assays based on Bla have been successfully applied to monitor constitutive and inducible protein interactions both in vitro and in vivo.7-9 Incorporation of Bla into HIV-1 virions allows convenient detection of HIV-1 virion fusion in primary T lymphocytes in complex cell populations.¹⁰

Substrates that detect Bla activity with high sensitivity are critical for the successful implementations of Bla assays. Fluorogenic substrates are superior to chromogenic substrates (such as wellknown nitrocefin and PADAC)¹¹⁻¹³ in detecting enzyme activity because of the high sensitivity of fluorescence detection. The first reported fluorogenic Bla substrate shown to work with cells was CCF2, which consists of a donor 7-hydroxycoumarin linked via a cephalosporin to an acceptor fluorescein.⁴ CCF2 fluoresces green because of fluorescence resonance energy transfer from the coumarin donor to the fluorescein acceptor. Hydrolysis of the cephalosporin by Bla splits off the fluorescein, disrupts energy transfer, and shifts the emission to blue.⁴ As the only fluorogenic Bla substrate currently available, CCF2 has many successful applications in tissue culture,⁴⁻¹⁰ but its high molecular weight and low aqueous solubility have prevented applications in intact mammalian tissues or in cells with thick walls such as in yeast or plants. More fluorogenic substrates would expand the usefulness of Bla as a biosensor. Here, we report a new class of small fluorogenic substrates that work by releasing a phenolic dye from a vinylogous cephalosporin.

Cleavage of the β -lactam ring of a cephalosporin creates a free amino group, which triggers spontaneous elimination of any leaving group previously attached to the 3' position.¹⁴ Umbelliferone is a widely used fluorophore with maximal excitation at 360 nm and emission at 460 nm. When its 7-hydroxy group is alkylated, the compound becomes essentially nonfluorescent. We thus designed and synthesized a β -lactam called **CC1** in which the 3' position of

11146 J. AM. CHEM. SOC. 2003, 125, 11146-11147

Scheme 1. Synthesis of CC1 and CC2^a

^{*a*} (a) BrCH₂CH(OCH₃)₂, DMF, K₂CO₃, 115 °C, 12 h, 82%; (b) concentrated HCl/CHCl₃, 0 °C, 30 min, 63%; (c) NaI, acetone, 1 h; (d) PPh₃, EtOAc, o/n, 81% in two steps; (e) CH₂Cl₂, 1 M NaOH, room temperature, o/n, 28%; (f) *m*-CPBA, CH₂Cl₂, 20 min, 93%; (g) TFA, CH₂Cl₂, anisole, 1 h, 0 °C, 71% (for n = 0) and 81% (for n = 1).

Figure 1. (A) Hydrolysis of **CC1** by β -lactamase releases the fluorophore umbelliferone. (B) Emission of **CC1** (10 nM in PBS) before (dash dot line) and after (solid line) treatment of β -lactamase (excitation at 400 nm).

the cephalosporin is linked to the 7-hydroxy group of umbelliferone alkylated through an allylic ether bond (Scheme 1).¹⁵ With the 7-hydroxy group of umbelliferone alkylated, **CC1** should be essentially nonfluorescent, and if Bla hydrolysis leads to spontaneous release of umbelliferone, in this case through an extended conjugation system, fluorescent signals will be produced (Figure 1A). The complete synthesis of **CC1** is illustrated in Scheme 1. The Wittig coupling reaction exclusively afforded the *Z*-isomer, as shown by its ¹H NMR spectrum.

We first examined the emission spectrum of **CC1** before and after the Bla treatment and observed a 153-fold increase in the intensity at the wavelength of 460 nm upon complete hydrolysis of **CC1** (Figure 1B). This result validates that Bla cleaves **CC1** and releases the fluorophore umbelliferone. The increase in the fluorescent emission at 460 nm is considerably larger than the 20fold enhancement of CCF2 at similar wavelengths and affords a convenient means to measure the Bla activity. In the phosphatebuffered saline (PBS) at pH 7.1, **CC1** is hydrolyzed by TEM-1 Bla with a catalytic constant (k_{cat}) of 52 ± 1 s⁻¹ and a Michaelis constant (K_m) of 70 ± 7 μ M (values were obtained from weighted least-squares fit of a double-reciprocal plot of the hydrolysis rate

[†] University of California, Los Angeles. [‡] University of California, San Diego.

Figure 2. Linear dependence of the CC1 hydrolysis rate on the β -lactamase concentration. Wild-type and CMV-bla Jurkat cells were mixed at different ratios (with the percentage of CMV-bla Jurkat cells from 0, 0.5, 1, 5, 10, 25, 50, and 75 to 100%), lysed, and diluted for CC1 assay with excitation at 365/42 nm and emission at 465/35 nm.

versus **CC1** concentration); its catalytic efficiency (k_{cat}/K_m) is 7.4 \times 10⁵ M⁻¹ s⁻¹. The spontaneous hydrolysis rate constant of CC1 in the PBS is $\sim 1.3 \times 10^{-6} \text{ s}^{-1}$, and the enzymatic acceleration is $\sim 4 \times 10^7$ fold.

As compared to CCF2 ($k_{cat} = 29 \text{ s}^{-1}$ and $K_m = 23 \mu M$),⁴ CC1 has a 2-fold lower affinity for Bla, but its k_{cat} is nearly twice as fast. Because CC1 itself is nonfluorescent, a higher concentration can be used to obtain a faster hydrolysis rate. The stability of CC1 in the absence of Bla can be further improved by oxidation of the sulfide in the six-membered ring to sulfoxide CC2, which resulted in a 4-fold decrease in the spontaneous hydrolysis rate (\sim 2.6 \times 10^{-7} s⁻¹). CC2 remains as a substrate with slightly less catalytic efficiency ($k_{cat} = 10 \text{ s}^{-1}$ and $K_m = 0.35 \text{ mM}$). CC2 may be preferred for experiments where a longer incubation is needed.

We tested the ability of CC1 in detecting Bla activity in measuring the percentage of Bla-expressed cells in a cell mixture. Wild-type Jurkat cells do not express any Bla, and a clonal Jurkat cell line constitutively transfected with Bla gene under the cytomegalovirus (CMV) promoter control (CMV-bla Jurkat cells) expresses approximately 1.5×10^4 Bla/cell.⁵ Two cell lines were mixed at different ratios, and the cell lysates were analyzed with CC1 for the Bla activity. A plot of the apparent hydrolysis rate versus the percentage of CMV-bla Jurkat cells reveals a linear relationship (Figure 2). This assay can reliably detect 0.5% CMVbla Jurkat cells in the background of wild-type cells, which corresponds to approximately 500 fM of Bla.

The importance of the inserted double bond is further exemplified in making a red fluorescent substrate, which is preferred due to a longer excitation and emission wavelength. Resorufin fluoresces maximally at 585 nm when excited at 550 nm, and a structure with resorufin directly linked to the 3'-position of cephalosporin has been made but found to spontaneously hydrolyze rapidly in water.¹⁶ However, an analogue of CC2 with umbelliferone replaced by resorufin (CR2) is stable in PBS buffer with a half-life of ~ 182 h. CR2 displays a 42-fold increase in the fluorescence intensity upon the hydrolysis by Bla with the catalytic parameters $k_{\text{cat}} = 17 \pm 3$ s^{-1} and $K_m = 114 \pm 12 \,\mu$ M. A membrane-permeable acetoxymethyl ester of CR2 (CR2/AM) was able to image the Bla activity in Blastably transfected C6 glioma cells (Figure 3).

This report describes a design of a new class of fluorogenic substrates of β -lactamase and characterization of their enzymatic kinetics, and it demonstrates their applicability in detecting β -lactamase activity in biological samples. These new fluorogenic substrates are easy to make, simple to use, have high sensitivity for detecting β -lactamase activity, and should facilitate applications

Figure 3. (A) Structures of CR2 and CR2/AM. (B) Fluorescence images of wild-type (left) and Bla-stably transfected (right) C6 glioma cells loaded with CR2/AM in Hank's Balanced Salts Solution for 25 min at room temperature. Excitation filter, 540/25; emission filter, 635/55; and $40 \times$ magnification.

with β -lactamase as a biosensor. The design reported here is not limited to umbelliferone and resorufin and could be extended to other molecules containing phenolic leaving groups. It may serve as a general strategy to create a wide variety of fluorogenic, chromogenic, and lumogenic substrates for β -lactamase.

Acknowledgment. This work was supported in part by a Damon Runyon Cancer Research Foundation fellowship and Burroughs Wellcome Fund (to J.R.), UCLA start-up funds (to J.R.), and the NIH NS27177 and DOE DE-FG03-01ER63276 (to R.Y.T.). We are grateful to Dr. Q. Li at NewBiotics, Inc., for the generous gift of purified TEM-1 β -lactamase. We thank Dr. Hasegawa for his assistance with Jurkat lymphocyte experiments.

Supporting Information Available: Synthesis of CC1, CC2, and CR2, and procedures for the measurements of kinetic parameters and Bla activity in cell lysates (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) Bush, K.; Sykes, R. B. In Antimicrobial Drug Resistance; Bryan, L. E., Ed.; Academic Press: New York, 1984; pp 1-31.
- Matagne, A.; Lamotte-Brasseur, J.; Frere, J. M. Biochem. J. 1998, 330, (2)581 - 598
- (3) Phlippon, A.; Dusart, J.; Joris, B.; Frere, J. M. Cell. Mol. Life Sci. 1998, 54.341 - 346
- (4) Zlokarnik, G.; Negulescu, P. A.; Knapp, T. E.; Mere, L.; Burres, N.; Feng, (c) Elokarnik, G., Regulszer, F.K., Khapp, T.E., Markov, E., Banes, W. (eng. L.; Whitney, M.; Roemer, K.; Tsien, R. Y. Science 1998, 279, 84–88.
 (5) Zlokarnik, G. Methods Enzymol. 2000, 326, 221–241.
- Whitney, M.; Rockenstein, E.; Cantin, G.; Knapp, T.; Zlokarnik, G.; Sanders, P.; Durick, K.; Craig, F. F.; Negulescu, P. A. Nat. Biotechnol. (6)
- 1998, 16, 1329-1333. Galarneau, A.; Primeau, M.; Trudeau, L.-E.; Michnick, S. W. Nat. Biotechnol. 2002, 20, 619–622.
- Wehrman, T.; Kleaveland, B.; Her, J.-H.; Balint, R. F.; Blau, H. M. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 3469-3474. (8)
- (9)Spotts, J. M.; Dolmetsch, R. E.; Greenberg, M. E. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 15142-15147.
- (10) Cavrois, M.; de Noronha, C.; Greene, W. C. Nat. Biotechnol. 2002, 20, 1151 - 1154
- (11) O'Callaghan, C. H.; Morris, A.; Kirby, S. M.; Shingler, A. H. Antimicrob.
- Agents Chemother. 1972, 1, 283–288. (12) Jones, R. N.; Wilson, H. W.; Novick, W. J., Jr. J. Clin. Microbiol. 1982, 15.677-683
- (13) Moore, J. T.; Davis, S. T.; Dev, I. K. Anal. Biochem. 1997, 247, 203-209.
- (14) Page, M. I. Adv. Phys. Org. Chem. 1987, 23, 165-270.
- (15) The 3'-vinyl cephems have been reported as potential antibiotics, but little was known about their kinetics as β -lactamase substrates. (16) Jiang, T.; Tsien, R. Y., unpublished data.

JA036126O